
Code Review and Security Assessment
For

Lelantus Spark
Initial Delivery: December 9, 2022
Final Delivery: December 19, 2022

Prepared For
Reuben Yap | Firo
Levon Petrosyan | Firo
Aaron Feickert | Cypher Stack
Aram Jivanyan| Firo
Peter Shugalev | Firo

Prepared by
Mikerah Quintyne-Collins | HashCloak Inc
Manish Kumar | | HashCloak Inc
Onur Inanc Dogruyol | HashCloak Inc

Table Of Contents

Executive Summary 3

Overview 5

Scope 5

Findings 6
FLS-01: Memory allocation missing for A_scalars 6
FLS-02: Missing checks if challenges are equal to 0 in various places 6
FLS-03: Check missing for double pedersen vector commitment 8
FLS-04: Using secret data for loop bounds 8
FLS-05: Shift values need to be typecasted in order to minimize undefined
behavior 9
FLS-06: Randomize() function should be able to return zero 10
FLS-07: Optimization in Chaum verification 10
FLS-08: Results of the curve/group operations needs to be double checked to
be valid 11

Executive Summary
The Firo community engaged HashCloak Inc for an audit of the implementation of the
Lelantus Spark protocol which is Firo next generation privacy protocol. Lelantus Spark
provides improvements to the original Lelantus construction and more user-friendly
features. The audit was done from October 24, 2022 to November 28, 2022. We were
provided the commit 88b499355c8781fad279ba3171ca8938bf0907ae and minimal
changes were done as we were undergoing the audit which didn’t affect the scope of
the audit. The audit scope were the files included in the libspark and spark folders.

A review of the codebase was done once the Firo development team went over the
report. PR #1218 and commit 60dba45a8aee17cae0bc24d12d4071b39583781b were
reviewed for the fixes we suggested. Further, several of the findings were reassessed
after clarifications by the Firo development team.

Over the course of the audit, we were mainly concerned with finding issues that may
lead to the following:

● Double spends
● Minting new coins for free
● Deanonymizing transactions
● Leaking transaction amounts
● Leaking of spending keys
● Unauthorized spends are not possible. An authorized spend means the user has

the spend key
● It is not feasible to link transactions to each other or to (diversified) addresses
● It is not feasible to link diversified addresses

Overall, we found issues ranging from medium to informational. We find that the code
within scope followed the paper very closely in its description of the protocol. In
particular, for cryptographic constructions, the implementations followed very closely
to its related paper’s description. This exposition leads to ease of maintainability and
auditability of the codebase.

Severity Number of Findings

Critical 0

https://github.com/firoorg/firo/commit/88b499355c8781fad279ba3171ca8938bf0907ae
https://github.com/firoorg/firo/pull/1218
https://github.com/firoorg/firo/commit/60dba45a8aee17cae0bc24d12d4071b39583781b

High 0

Medium 1

Low 5

Informational 2

Overview
Lelantus Spark is Firo’s next generation privacy protocol. It includes various
improvements to the Lelantus construction such as recipient privacy and more
reasoned security guarantees. Further, it includes several usability features such as
delegated proving, selective disclosures and multisignatures. The cryptographic
primitives and constructions used in the implementation of the Lelantus Spark are well
understood and rely on common cryptographic assumptions. Further, they are in use in
comparable privacy coins such as Monero.

Scope
The scope for this audit was the following:

● All the files within src/libspark

● All the files within src/spark

If there were any direct dependencies within the Firo codebase that were used within
the above two folders that we believed impacted the security of the audit, we included
those minimally within the scope of the audit. In particular, we also considered the
following:

● src/secp256k1
● src/crypto

as needed to better understand and assess the security of the code in scope.

Findings
FLS-01: Memory allocation missing for A_scalars
Type: Low
Files affected: src/libspark/bpplus.cpp

Description: In BPPlus::prove, in line 139 & 140, A_points.reserve(2*N*M +
1); is declared twice for A_points but there is no memory allocation for
A_scalars.

Impact: Repeated reallocation of memory may take place for A_scalars which can
affect the efficiency and also may result in memory leak. The memory leak is not very
likely because deallocation in vector happens automatically once the vector goes out
of scope.

Suggestion: line 140 must be replaced with A_scalars.reserve(2*N*M + 1);

Status: After discussions with the development team, this finding’s rating score was
lowered from Medium to Low. This typo has been fixed at the commit

5dd4cc7154bd0e139b2e4d76da9529f4643a5715.

FLS-02: Missing checks if challenges are equal to 0 in various places
Type: Medium
Files affected: src/libspark/bpplus.cpp

Description: In various places, after the transcript is updated, challenges are
computed by hashing the transcript and relevant proof elements. However, the
challenges are not checked if they are equal to 0 in Scalar.

Impact: If a challenge is equal to 0, then a malicious prover can invert 0, breaking the
soundness of the protocol. It would effectively be reduced to mounting a hash
preimage attack.

Suggestion: This can be fixed by a check and re-doing computation if the check fails.
Write test cases for the ZERO in line 7

https://github.com/firoorg/firo/commit/5dd4cc7154bd0e139b2e4d76da9529f4643a5715

const Scalar ZERO = Scalar((uint64_t) 0);

// In Line 155, 387
Scalar y = transcript.challenge(“y”);

if(y == ZERO) {
MINFO(“y is 0, try again”);
goto try_again;

}

// In Line 156, 395
Scalar z = transcript.challenge(“z”);

if(z == ZERO) {
MINFO(“z is 0, try again”);
goto try_again;

}

// In Line 255, 403
Scalar e = transcript.challenge(“e”);

if(e == ZERO){
MINFO(“e is 0, try again”);
goto try_again;

}

// In Line 286, 409
Scalar e1 = transcript.challenge(“e”);

if(e1 == ZERO){
MINFO(“e is 0, try again”);
goto try_again;

}

Status: These zero checks have been added only to the BPPlus::verify. It is not
added to the BPPlus::prove because in order for an attacker to enforce this
condition from the perspective of the prover, they would simply ignore the checks
altogether and be able to invert 0. Hence, it suffices to simply add these checks to the

verifier to ensure that the verifier catches a malicious prover. The check has been
added at the commit 5dd4cc7154bd0e139b2e4d76da9529f4643a5715.

FLS-03: Check missing for double pedersen vector commitment
Type: Low
Files affected: src/libspark/grootle.cpp

Description: In the function vector_commit in line 65, the validity of the double
pedersen commitment statement is not checked i.e., whether size of vectors Gi equals
to a and Hi equals to b.

Impact: Passing an incorrect argument to vector_commit can lead to segmentation
fault.

Suggestion: There should be a check for the pedersen statement.

if (Gi.size() != a.size() || Hi.size() != b.size()) {
Throw std::invalid_argument(“ Bad pedersen statement”);

}

Status: This check has been implemented at the commit
5dd4cc7154bd0e139b2e4d76da9529f4643a5715

FLS-04: Using secret data for loop bounds
Type: Low
Files affected: src/libspark/keys.cpp

Description: In keys.cpp within GetHex(), the loop on line 187 is directly dependent
on buffer. buffer is not directly dependent on secret data but does depend on Q1

and Q2 on lines 179 and 180 respectively.
Impact: Loops with a bound derived from a secret value directly expose a program to
timing attacks

Suggestion:

https://github.com/firoorg/firo/commit/5dd4cc7154bd0e139b2e4d76da9529f4643a5715
https://github.com/firoorg/firo/commit/5dd4cc7154bd0e139b2e4d76da9529f4643a5715

// In Line 187, instead of using the following

for (const auto b : buffer) {
ss << (b >> 4);
ss << (b & 0xF);

}

// First use the following, then use the loop

size_t buffer_size = buffer.size();

Status: The loop bound bounds were not dependent on the secret data and hence this
change is not made. But, the GetHex() and SetHex() were outdated and hence
both those functions were removed at the commit
60dba45a8aee17cae0bc24d12d4071b39583781b.

FLS-05: Shift values need to be typecasted in order to minimize
undefined behavior
Type: Low
Files affected: src/libspark/bech32.cpp

Description: If it’s not typecasted, the bitwise left-shift operator may be undefined and
may cause the runtime error.

Impact: It may cause a runtime error.

Suggestion: In Line 116

uint8_t c0 = (uint8_t) c >> 25;

https://github.com/firoorg/firo/commit/60dba45a8aee17cae0bc24d12d4071b39583781b

Status: After discussion with the development team, it was found that this change
breaks the beach32 capability to detect certain address malleations. Therefore, this
change was not made.

FLS-06: Randomize() function should be able to return zero
Type: Low
Files affected: secp256k1/src/Scalar.cpp

Description: The randomize() function used in src/libspark and src/spark for
generating any random scalar does not generate the zero scalar. In particular, the line
220 in Scalar.cpp is incorrect.

Impact: Excluding zero in randomize() leads to a biased randomize function where
distribution of all the numbers might not be equally likely.

Suggestion: The line 220 should be replaced by

while(!this->isMember());

Status: This issue is fixed at the commit 60dba45a8aee17cae0bc24d12d4071b39583781b

FLS-07: Optimization in Chaum verification
Type: Informational
Files affected: src/libspark/chaum.cpp

Description: In line 141, optimization can be done in the aggregation of A2 by adding
the proof.A2[i] first and then calling points.emplace_back on the sum. In this way, n-1
scalar space and n-1 points space can be saved.

Suggestion:

GroupElement A2_sum;
A2_sum = proof.A2[0];
for(std::size_t i = 1; i < n; i++) {

https://github.com/firoorg/firo/commit/60dba45a8aee17cae0bc24d12d4071b39583781b

A2_sum += proof.A2[i];
}
scalars.emplace_back(w);
points.emplace_back(A2_sum);

Status: This suggestion was useful for the efficiency and hence is added at the commit
5dd4cc7154bd0e139b2e4d76da9529f4643a5715

FLS-08: Results of the curve/group operations needs to be double
checked to be valid
Type: Informational
Files affected: src/libspark/bpplus.cpp, src/libspark/chaum.cpp,
src/libspark/grootle.cpp, src/libspark/schnorr.cpp

Description: In various places, curve/group operations are used. Results of these
operations need to be double checked to be sure they are valid.

Impact:

Suggestion: In the specified files above, the results needs to be checked. The
following functions are need to be inserted after curve/group operations.

// In src/secp256k1/include/GroupElement.h, the following functions
// can be used

isMember();
isInfinity();

// In src/secp256k1/include/Scalar.h, the following function // can
be used

isMember();

In src/libspark/bpplus.cpp

https://github.com/firoorg/firo/commit/5dd4cc7154bd0e139b2e4d76da9529f4643a5715

// In Line 151

proof.A = A_multiexp.get_multiple();

// In Line 248, 249

L_ = L_multiexp.get_multiple();
R_ = R_multiexp.get_mutliple();

// In Line 517

Return multiexp.get_multiple().isInfinity();

// In Line 260, 261

Gi1[i] = Gi1[i] * e_inverse + Gi1[i+N1] * (e*y_N1_inverse);
Hi1[i] = Hi1[i] * e + Hi1[i+N1]*e_inverse;

// In Line 281, 282

proof.A1 = Gi1[0]*r_ + Hi1[0]*s_ + G*(r_*y*b1[0] + s_*y*a1[0]) +
H*d_;

proof.B = G*(r_*y*s_) + H*eta_;

In Line 288, 289, 290

proof.r1 = r_ + a1[0]*e1;
proof.s1 = s_ + b1[0]*e1;
proof.d1 = eta_ + d_*e1 + alpha*e1.square();

In src/libspark/chaum.cpp

// In Line 62

proof.A1 = H*t;

// In Line 65, 66

proof.A1 += F*r[i] + G*s[i];
proof.A2[i] = T[i]*r[i] + G*s[i];

// In Line 72, 75, 76, 77, 78

proof.t3 = t;
proof.t1[i] = r[i] + c_power*x[i];
proof.t2 += s[i] + c_power*y[i];
proof.t3 += c_power*z[i];
c_power *= c;

In src/libspark/schnorr.cpp

// In Line 43

proof.A = G*r;

// In Line 50, 51

proof.t += y[i].negate()*c_power;
c_power *= c;

// In Line 78
c_power *= c;

Status: After discussing with the development team, it was concluded that these
closure checks should be done at the curve/scalar wrapper level and not in the
libspark. Therefore, a separate closure check in the libspark is not required.

